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This paper examines the dynamic response of a rotating squealing disc brake subject to

distributed nonlinear contact stresses where two brake pads are assumed to be

stationary and rigid. The friction stresses produce high-frequency vibrations that exhibit

standing or traveling waves on the disc surface. The wave pattern resulting from the

results show that the wave pattern is associated with mode-coupling character. For a

steady-squealing mode, the stick zone of the contact area is determined by a smooth

friction–velocity curve having both negative and positive slopes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Disc brake squeal has been the subject of significant research over the past few decades as reviewed by Kinkaid et al. [1]
and Ouyang et al. [2]. Generally, the dynamic stability of steady sliding in a brake system is analyzed using the linearized
equations of motion. The work by Ouyang et al. [3–5] used a rotating contact load on a stationary disc and investigated the
equilibrium instability with respect to system parameters. In more realistic theoretical linear model, a disc brake system
can be modeled as a rotating annular plate subject to distributed friction stresses due to contact with two stationary pads.
The distributed loading generates non-conservative work that can lead to flutter instability [6–10]. This flutter instability is
attributed to friction-coupling among certain modes of the system. One of the typical unstable friction-coupling modes is
the transverse doublet mode pair. The doublet mode pair has been found to generate the binary flutter instability under
critical conditions associated with frequency separation, contact stiffness, contact span angle and other factors [8].

When the flutter instability of the disc arises, the amplitude of vibration response increases, resulting in the need for
nonlinear equations of motion to describe the vibration response. Hu et al. [11] demonstrated time histories of rotor
vibration and the associated squeal frequencies using nonlinear, transient finite element analysis. Their model considered
nonlinear contact kinematics, but neglected disc rotation and radial friction force that have been recently proposed by
Hochlenert et al. [12]. As a result, the dissipative mechanism due to the decrease of disc rotating speed was not addressed.

One major portion of the experimental studies on brake squeal has been the wave pattern motion of a squealing disc
brake assembly [1]. Holographic techniques such as DPHI (double pulsed holographic interferometry, Fieldhouse et al. [13]
and Talbot et al. [14]) and ESPI (high-speed electronic speckle pattern interferometry, Reeves et al. [15] and Krupka et al.
[16]) have been used to visualize the vibration pattern on the surface of a squealing disc. The series of time-consecutive
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images of the squealing disc provide the vibration pattern of the ‘‘n’’th mode (n is the nodal diameter) and its mobility
(either traveling or standing). Reeves et al. [15] proposed a combination of a pair of modal waveforms to express the
experimentally observed wave patterns. Talbot et al. [14] considered fitting the experimental nodal lines as a superposition
of multiple waveforms in the Fourier series. Fitting the experimental data to mathematical waveforms provides the clue
that the dynamic solution of a nonlinear squealing disc can be approximately expressed in the modal expansion form.
Recently, Giannini et al. [17] have reported on the observation of a pure traveling wave of a squealing disc brake using a
vibrometer laser scan. They proposed that the traveling wave was generated from the two stationary waves with the same
amplitude and a 901 phase difference.

The literature on spinning discs interprets a single vibration mode as the superposition of two (forward and backward)
traveling waves [18]. The resonant condition is possible when the disc rotation speed matches the critical rotation speed
[19]. In application to automotive brake systems, however, the disc speed never reaches the critical speed associated with a
high-frequency squeal mode. Alternately, Flint et al. [7] demonstrated that the deflection shape of a flexible beam travels
forward by the numerical solutions obtained from the linearized equations of motion. Unfortunately, there is as yet no
analytical approach explaining the experimental wave pattern behavior of a squealing disc brake.

In the current paper, a disc brake model with nonlinear, distributed contact stresses over the contact area is developed.
The normal and friction stresses are described on the rotating deformable surface of the disc. The solution of the out-of-
plane vibration in an axi-symmetric disc with nonlinear contact kinematics can be expressed as a Fourier series in the
circumferential coordinate (y) with the radial spatial distribution of the response being approximated by the linear
vibration modes of the disc. Throughout the numerical time and area integrations, the binary flutter mechanism is shown
to generate a traveling wave pattern depending on the mode-coupling character.
2. Nonlinear equations of motion with linearized contact model

The nonlinear dynamic response of disc brake system subject to distributed friction stresses on a deformable contact
surface (Fig. 1a) is to be investigated. The contact area is modeled as an annular sector shape with the inner and outer radii
ri and ro, respectively, and the contact span angle (yc) as shown in Fig. 1b. The disc is subject to clamped boundary
condition in all directions at the inner radius (ai) of the rotating shaft with a constant rotating speed (O) and a free
boundary condition at the outer radius (ao). A pre-stress poð¼ No=AcÞ is uniformly applied over the contact area on both
sides of the rotating disc, where No and Ac are the pre-normal load and contact area, respectively.

The contact kinematics between the rotating disc and the stationary friction material are described on the deformed
surface of the disc as shown in Fig. 2. The transverse displacement is denoted as ~w in the local coordinates ðr;jÞ attached to
the rotating disc and w in the reference coordinates ðr;yÞ of the global frame. The unit vector na is normal to the top surface
of the deformed disc. Friction material is assumed to have no in-plane deformation in such a manner that the contact point
b0 is in contact with a0 of the disc at current time t and the in-plane motion of b0 is neglected. Hence, the displacement at b0

follows:

hub0 ; ezi ¼ hua0 ; ezi; hub0 ; eri ¼ 0 and hub0 ; ehi ¼ 0, (1)
Ω
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Fig. 1. Rotating deformable disc configuration with two contact interfaces: (a) reference coordinates ðr; yÞ and local coordinates ðr;jÞ and (b) disc and

contact geometry.
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Fig. 2. Description of contact point: (a) position and displacement vectors, ra and ua of the perturbed contact position, a at ðr;yÞ in current configuration

and (b) contact positions, a0 and b0 in 2D figure.
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where h�; �i denotes the inner product. Also, the displacement vector at the perturbed position a of the disc can be described
under the assumption that the in-plane components of the displacement vary linearly through the thickness due to the
small oscillation of a squealing thin disc:

ua ¼ ra � r � er þ
h

2
ez

� �
, (2)

where

ra ¼ r � er þ ~wðr;j; tÞez þ
h

2
na, (3)

na ¼
rfa

jrfaj
, (4)

rfa ¼ ez �
qw

qr
er �

qw

rqy
eh. (5)

The corresponding velocity vector is obtained by the time-derivative in the reference coordinates:

Va ¼
Dra

Dt
, (6)

where the coordinate transformation from the local to reference coordinates is given by

D ~wðr;j; tÞ
Dt

¼
qwðr; y; tÞ

qt
þO �

qwðr; y; tÞ
qy

. (7)

The normal vector ðna0 Þ, displacement ðua0 Þ and velocity ðVa0 Þ at a0 of the deformable disc (Fig. 2b) are obtained by a Taylor
series expansion on Eqs. (2)–(6):

na0 ¼
rfa0

jrfa0 j
, (8)

ua0 ¼ ua þ
qua

qr
Dr̄ þ

qua

qy
Dȳþ h:o:t:, (9)

Va0 ¼ Va þ
qVa

qr
Dr̄ þ

qVa

qy
Dȳþ h:o:t:, (10)

where

rfa0 ¼ rfa þ
@rfa

@r
Dr̄ þ

@rfa

@y
Dȳþ h:o:t:, (11)

Dr̄ ¼
h

2

qwðr; y; tÞ
qr

þ h:o:t:, (12)
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rDȳ ¼
h

2

qwðr;y; tÞ
rqy

þ h:o:t: . (13)

In the linearized contact models [10,12] above, the higher order terms (h.o.t.) are neglected under the assumption that the
squealing oscillations are small.

Coulomb friction is enforced at a0 between the disc and a stationary spring element as shown in Fig. 3 to produce:

F ¼ �ðm� NÞd, (14)

N ¼ �N � na0 , (15)

where

d ¼
Va0 � Vb0

jVa0 � Vb0 j
, (16)

Vb0 ¼
qua0

qt
; ez

� �
ez. (17)

The force balance on a single contact spring element in the Z-direction provides the nonlinear relationship such that

N ¼
po þ kchua0 ; ezi

hðm� dþ na0 Þ; ezi
. (18)

Here, the friction coefficient m on the top of the disc is expressed as a smooth friction curve [20]:

mðr; tÞ ¼ jð1� e�b2jVslipjÞ � fmk þ ðms � mkÞe
�b1jVslipjgj, (19)

where ms, mk, b1 and b2 are the control parameters determining the magnitude and slope of the friction coefficient and
Vslip ¼ Va0 � Vb0 .

The discretized equations of motion for the friction-coupled disc system are derived in terms of modal coordinates,
fqngn¼1;2;...;Nd

through the assumed modes method:

d

dt

qL

q_qm

� �
�

qL

qqm
¼
XNd

n¼1

QmnðqnÞ; m ¼ 1; . . . ;Nd, (20)

L ¼ T � ðU þ UcÞ, (21)

where U is the strain energy of the component disc and

T ¼
rh

2
�

Z 2p

0

Z ao

ai

qwðr; y; tÞ
qt

þO
qwðr; y; tÞ

qy

� �2

r dr dy, (22)
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Fig. 3. Contact stresses at a0 and b0 in current configuration, kc is contact stiffness.
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Uc ¼ Uc;top þ Uc;bottom, (23)

dW �
XNd

m¼1

XNd

n¼1

QmnðqnÞ � dqm ¼ dWtop þ dWbottom. (24)

Here the virtual work (dW) done by the contact stresses and the contact strain energy (Uc) due to contact stiffness over the
top contact area are expressed as

dWtop ¼

Z yc=2

�yc=2

Z ro

ri

fhðNþ FÞ; dua0 i � hðNþ FÞ; dub0 igr dr dy, (25)

Uc;top ¼
kc

2

Z yc=2

�yc=2

Z ro

ri

hub0 ; ezi
2r dr dy. (26)

The virtual work and contact strain energy on the bottom contact, dWbottom and Uc;bottom are similarly obtained by

dWbottom ¼

Z yc=2

�yc=2

Z ro

ri

fhðN0 þ F0Þ; dua00 i � hðN
0 þ F0Þ; dub00 igr dr dy, (27)

Uc;bottom ¼
kc

2

Z yc=2

�yc=2

Z ro

ri

hub00 ; ezi
2r dr dy, (28)

where N0 and F0 denote the normal and friction force acting at a00 and where b00 denotes the contact position of the bottom
friction material in contact with a00.

The trial functions used in the above assumed modes model will be the linear vibration modes of the stationary disc:

wðr; y; tÞ ffi
XNd=2

n¼1

RnðrÞfcos ny� q2n�1ðtÞ þ sin ny� q2nðtÞg, (29)

where fRnðrÞgn¼1;...;Nd=2 is the radial eigenfunction with the nth nodal diameter obtained from Bessel functions [8]
satisfying the prescribed boundary conditions. For mass-normalization, the radial function is set to be rhp

R ao
ai

R2
nr dr � 1.

The subsequent numerical eigenfunctions of the disc are calculated for density (7150 kg m�3), Young’s modulus (88.9 GPa)
and Poisson’s ratio (0.285).

A single doublet mode pair model of the disc has been shown to be effective in predicting the flutter instability of squeal
by Kang et al. [8]. The binary mode approximation can provide the essential character of the squealing disc. Therefore, the
squeal mode of the squealing disc is expressed in the form of the nth doublet mode pair:

wðr; y; tÞ ¼ RnðrÞfcosðnyÞ � a1ðtÞ þ sinðnyÞ � a2ðtÞg, (30)

where the modal coordinates a1 and a2 are to be determined. Substitution of Eq. (30) into Eq. (20) produces the nonlinear
equations of motion for the one doublet-mode pair. In the next section, the theory for wave pattern motion associated with
the one-doublet binary mode is proposed and the numerical results for the system parameters in Table 1 are illustrated.

3. Wave pattern: standing wave and traveling wave

The wave pattern motion of disc brake system has been observed experimentally using holographic techniques [13–16].
However, this work does not explain why a surface of the squealing disc brake exhibits either a standing wave or a traveling
wave and what determines the wave pattern of the disc surface during squeal. The analytical approach may provide the
mechanism determining the wave pattern motion. A single doublet mode pair model is used in the following manner.

The wave pattern motion for a single doublet mode pair can be determined from the so-called wave pattern index c(t):

cðtÞ ¼ _a2ðtÞ � a1ðtÞ � a2ðtÞ � _a1ðtÞ. (31)

In Appendix A, it is shown that

cðtÞ40 : forward traveling wave ðFWDÞ, (32)
Table 1
Nominal values of system parameters.

ao (mm) ai (mm) h (mm) ro (mm) ri (mm) yc (1) kc (N m�3) No (N)

150 90 13 142 100 62 0.35�1011 2000
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cðtÞo0 : backward traveling wave ðBWDÞ, (33)

cðtÞ ¼ 0 and
dcðtÞ

dt
a0 : instantaneous standing ðISÞwave, (34)

cðtÞ ¼ 0 and
dcðtÞ

dt
¼ 0 ðfor sufficient timeÞ : standing wave. (35)

Through linearization of the nonlinear equations of motion (20) about a steady-sliding state, the analytical solutions for the
wave pattern motion can be obtained. It is notable that nonlinearity obtaining from contact kinematics of Eq. (16) and (18)
and friction curve of Eq. (19) has been linearized in this process. The corresponding linearized equations of motion for one
doublet mode pair are expressed in the matrix form:

€a1

€a2

( )
þ

D1 2nO
�2nO D2

" #
_a1

_a2

( )
þ

O2
1 b1

b2 O2
1

2
4

3
5 a1

a2

( )
¼ 0, (36)

where components of Eq. (36) are described in Appendix B. The mode-coupling instability of one transverse doublet mode
pair with constant friction coefficient was already investigated in Ref. [8]. The destabilizing effect of mode-coupling under
constant friction coefficient is dominant, whereas the negative friction-slope denoted by Ns1 and Ns2, respectively, of D1

and D2 in Eqs. (B.3) and (B.4) makes supplementary effect [10]. Here, D1 and D2 represent for the positive damping due to
system structural damping and radial dissipative effect and the negative damping obtained from the negative friction-
slope. The off-diagonal elements, b1 and b2 of the stiffness matrix stem from the friction-coupling between the doublet
mode pair. Their closed-form solutions are sought for the case when the modal damping coefficients are identical ðD1 ¼

D2 � DÞ in the absence of gyroscopic effects. The numerical solutions for the general case will be provided later. For the
non-gyroscopic case with identical damping coefficients, the eigenvalues l and eigenvectors V corresponding to Eq. (36)
are

l1;2 ¼ �
D

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 2ðO2

1 þO2
2Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 þO2
2Þ

2 þ 4b1b2

qr
, (37)

l3;4 ¼ �
D

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 2ðO2

1 þO2
2Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 þO2
2Þ

2 þ 4b1b2

qr
, (38)

V1;2 ¼
1

2b2
ðO2

1 �O2
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 �O2
2Þ

2 þ 4b1b2

q� �
1

8<
:

9=
;, (39)

V3;4 ¼
1

2b2
ðO2

1 �O2
2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO2

1 �O2
2Þ

2 þ 4b1b2

q� �
1

8<
:

9=
;, (40)

where the zero frequency case (Im ðlÞ ¼ 0) in the following analysis is excluded due to the nature of squeal vibrations.
For non-merged binary modes; ðO2

1 �O2
2Þ

2 þ 4b1b240, the eigenvalues and eigenvectors can be expressed as

l1;2 � �
D

2
� iL1 and l3;4 � �

D

2
� iL2, (41)

V1;2 �
u1

1

	 

and V3;4 �

u2

1

	 

, (42)

where L1 and L2 (aL1) are the modal circular frequencies and u1 and u2ðau1Þare real. For mode-merged binary modes;
ðO2

1 �O2
2Þ

2 þ 4b1b2o0, the eigensolutions are

l1;2 � �
D

2
� ðaþ ioÞ and l3;4 � �

D

2
� ða� ioÞ, (43)

V1;2 �
u

1

	 

� i

v

0

	 

and V3;4 �

u

1

	 

þ i

v

0

	 

, (44)

where o is the merged circular frequency and að40Þ, vðo0Þ and u are real. From the abbreviated form of eigensolutions,
the general solutions wAðr; y; tÞ and wBðr; y; tÞ of Eq. (30), respectively, for non-merged modes and mode-merged binary
modes can be rewritten as the linear combination of eigenvectors (42) and (44) such that

wAðr; y; tÞ ¼ etð�D=2ÞRn½cosðn � yÞfA1 � u1 cosðL1 � tÞ þ A2 � u2 cosðL2 � tÞg

þ sinðn � yÞfA1 cosðL1 � tÞ þ A2 cosðL2 � tÞg, (45)
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wBðr; y; tÞ ¼ etða�D=2ÞRn½cosðn � yÞfB1ðu cosðotÞ þ v sinðotÞÞ þ B2 u sinðotÞ � v cosðotÞð Þg

þ sinðn � yÞfB1 cosðotÞ þ B2 sinðotÞg�

þ etð�a�D=2ÞRn½cosðn � yÞfB3ðu cosðotÞ � v sinðotÞÞ þ B4ð�u sinðotÞ � v cosðotÞÞg

þ sinðn � yÞfB3 cosðotÞ � B4 sinðotÞg�, (46)

where the decaying terms associated with e�at are neglected in Eq. (46) and where ðA1;A2Þ and ðB1;B2;B3;B4Þ depend on
initial conditions. In turn, the wave pattern indices, cAðtÞ and cBðtÞ are calculated for Eqs. (45) and (46) as

cAðtÞ ¼
1
2A1A2ðu2 � u1Þ½ðL1 þL2Þ sinfðL1 �L2Þtg þ ðL1 �L2Þ sinfðL1 þL2Þtg�, (47)

cBðtÞ ¼ �ðB
2
1 þ B2

2Þv�o40. (48)

Since the squeal frequencies are high with small frequency separation, jL1 þL2jbjL1 �L2j. With this, cA(t) reduces to the
simple harmonic function of

cAðtÞ 	
1
2A1A2ðu2 � u1Þ � ðL1 þL2Þ sinfðL1 �L2Þtg. (49)

Eqs. (48) and (49) indicate that wave pattern is independent of the damping coefficient D.
It is concluded from Eq. (48) that the mode-merged doublet pair should always retain a forward traveling wave near the

steady-sliding equilibrium. In contrast, the wave pattern of the non-merged doublet pair switches between forward and
backward traveling waves where the instantaneous standing wave appears at the time of transition (ts) between two
patterns which is periodic:

t ¼ ts ¼
kp

jL1 �L2j
; k ¼ 1;2; . . . ;1. (50)
Fig. 4. Wave pattern index for non-merged and merged binary modes (n ¼ 7): (a) frequency loci, (b) time response at m ¼ 0.2, (c) c(t) at m ¼ 0.2, (d) time

response at m ¼ 0.5 and (e) c(t) at m ¼ 0.5; D1 ¼ D2 ¼ 2xnon, xn ¼ 2�10�3, O ¼ 0; FWD, IS and BWD denote the forward traveling, instantaneous standing

and backward traveling waves.
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From the closed-form solutions of the linearized system, it is found that the wave pattern motion is associated with the
mode-coupling of the binary mode pair such as the mode-merged and non-merged states. Fig. 4 illustrates the wave
patterns corresponding to the non-merged and mode-merged pair modes, as predicted in Eqs. (48)–(50).

Giannini et al. [17] provided a visualization of an experimentally observed traveling wave pattern of the squealing disc
through the capture of out-of-plane mode shapes at six different time frames. In the similar manner, vibration deformation
shapes at different frames are numerically calculated here for determining the direction of wave propagation, as illustrated
in Fig. 5. It should be highlighted that the wave pattern and the direction of traveling waves in Fig. 5 correspond to the wave
pattern index c(t) of Fig. 4c.

In the presence of gyroscopic effects and non-identical damping coefficients (D1aD2), the wave pattern can be
determined numerically. Numerical solution of Eq. (36) is obtained using the fourth-order Runge–Kutta method. Fig. 6
exhibits the wave pattern index c(t) for the doublet disc pair subject to rotation effects. For the case of m ¼ 0.2, the duration
of backward traveling wave (c(t)o0) diminishes as the rotation speed increases. In contrast, for m ¼ 0.5, the wave always
travels forward regardless of the rotational speed. In this case, the time response becomes stable for O ¼ 2 rad s�1 due to
the increase of damping coefficient associated with radial dissipative effect, but the wave pattern is not changed (c(t)40
for all t40).

The wave pattern of a squealing disc subject to nonlinear contact stresses can be also assessed by the numerical solution
of Eq. (20). In the subsequent analysis, the friction curve is assumed to have the numerical values: ms ¼ 0:5, mk ¼ 0:3,
b1 ¼ 20 and b2 ¼ 1. At every time-iteration step of Eqs. (25)–(28), a contact area integration is required. To accomplish this,
the contact area is discretized with a grid in both radial and circumferential directions for the numerical area integration in
the following manner:

Z yc=2

�yc=2

Z ro

ri

ð dÞr dr dyffi
XMr

i¼1

XMy

j¼1

ð dÞri � Dri � Dyj (51)

where Mr , My denote the number of the nodes of the contact area, respectively, in the radial and circumferential directions.
From convergence studies considering the number of grid points for the integration, a (16� 40) grid in the radial and
circumferential directions, respectively, is chosen, as shown in Fig. 7.
Fig. 5. Mode shapes (4 frames) for non-merged binary modes of Fig. 4c: (a) FWD at t ¼ 0:008 sþ kDt, (b) IS at t ¼ 0:018 sþ kDt and (c) BWD at

t ¼ 0:024 sþ kDt, Dt 	 1:7� 10�7 s and k ¼ 1,2,3,4; friction stresses are defined under the counter-clockwise disc rotation.
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Fig. 6. Rotation effects on wave pattern: (a, b) c(t) at m ¼ 0.2 and (c, d) c(t) at m ¼ 0.5; solid lines are identical to those of Fig. 4.

Fig. 7. Convergence check for the numerical area integration with respect to the number of grid points.
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Fig. 8a shows an example of limit cycle oscillations resulting from a mode-coupling instability. The corresponding wave
pattern of the nonlinear response is found to be a forward traveling wave as illustrated in Fig. 8b. Talbot et al. [14] reported
that the out-of-plane vibration and a forward traveling wave around the disc surface were observed in a variety of disc
brake systems during squeal. Also, they suggested the possibility of a smaller backward traveling wave, which may be
explained by mode-separated binary modes as shown in Figs. 4b and c.
4. Analysis of stick–slip behavior in limit cycle response

In this section, we focus on the stick–slip behavior of a steady-squealing binary mode where the out-of-plane vibration
has been found to be a forward traveling waveform. The nonlinear friction curve in Eq. (19) retains two separate sections
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Fig. 8. Limit cycle oscillations and the corresponding wave pattern index for a steady-squealing mode due to binary flutter (n ¼ 7) subject to nonlinear

contact stresses: (a) a1ðtÞ and (b) c(t), O ¼ 5 rad s�1, xn ¼ 0.0.

Fig. 9. Determination of stick–slip phase for a qualitatively smooth friction curve: Vslip ¼ jVa0 � Vb0 j.
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with respect to the slope of the curve: positive slope, dm=dVslip40 and negative slope, dm=dVslipo0. The negative slope of
m becomes one of destabilizing factors (note that mode-coupling due to constant m is a major destabilizing factor [10]),
whereas the positive slope of m near relative zero velocity can be used to determine the stick phase of stick–slip motion of
the steady-squealing mode in the smoothing sense (Fig. 9) [21–23]. In terms of the parameters in friction function of
Eq. (19), ms, mk and b1 determine negative friction-slope and magnitude of friction coefficient on the basis of experimental
data [24]. b2 describing a creep region is chosen for numerical calculation as a smoothing method which provides a
qualitative stick–slip behavior [21–23]. Here, b2 is meaningful only when the flutter instability associated with (ms, mk, b1)
occur at the steady-sliding state and the disc oscillation increases up to the point where the relative velocity between the
disc rotation speed and vibrational speed approaches zero at certain locations of the contact region. From this, the
stick–slip state can be qualitatively determined over the entire contact interface of the disc system during the limit cycle of
a squealing mode if the time history of the friction curve is obtained over the area.
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Fig. 10. Response on limit cycle; O ¼ 5 rad s�1, xn ¼ 0.0.

Fig. 11. Stick–slip characteristics on limit cycle of a steady-squealing mode (n ¼ 7): (a) stick-zone (shaded) on the contact interface, (b) one cycle

of friction curve at ‘‘A’’ and (c) phase plane of slip components at ‘‘A’’; ‘‘A’’ is located at ðr; yÞ ¼ ðro ;11
Þ; Vslip;y � hVslip; ehi and Vslip;r � hVslip; eri.
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Fig. 10 shows the limit cycle of each modal response of the binary flutter modes. For the limit cycle of a steady-squealing
binary flutter mode, stick zone is illustrated on the contact area as shown in Fig. 11a, where this zone undergoes stick phase
during limit cycle oscillations. A specific location in the stick zone is chosen for the demonstration of stick–slip behavior.
The friction coefficient and the components of slip velocity at the selected location are traced over one period as shown in
Figs. 11b and c. It is notable that the radial component of slip velocity is not negligible since the radial component makes
significant contribution to energy dissipation near zero relative velocity.

5. Conclusions and discussion

The dynamic response of one transverse doublet mode pair of a disc brake due to distributed, nonlinear contact stresses
has been investigated under the assumption that two brake pads are stationary and rigid. The analytical solutions of
linearized response for the wave pattern motion have been provided near the steady-sliding state of the system. The
conclusion for the linear regime is drawn as the following. For a mode-merged binary mode, the squealing waveform of the
disc travels forward regardless of disc rotation speed. In contrast, the wave pattern of the mode-separated binary mode
switches between a forward and backward traveling wave, where an instantaneous standing wave appears during the
transition of two patterns. Also, disc rotation speed is found to influence the wave pattern motion.

The nonlinear response of a squealing disc brake has also been analyzed. For a steady-squealing binary mode, the wave
pattern is seen to be a forward traveling wave regardless of the disc rotational speed. The proposed disc brake model also
predicts that the dynamic response reaches the limit cycle of the out-of-plane vibration. Throughout the contact area
discretization and time-integration, the nonlinear friction coefficient at each finite contact element is calculated and used
for the determination of the existence of a stick–phase during one period. It is notable that the stick regime over the contact



ARTICLE IN PRESS

J. Kang et al. / Journal of Sound and Vibration 325 (2009) 552–564 563
area resembles the stationary vibration pattern of a squealing disc. Particularly, the radial component of friction force
assumes a significant role on the steady-squealing response.

The nonlinear binary flutter mechanism of a squealing disc allows for a better understanding on the post-onset
mechanism. Through linearization of the nonlinear equations of motion, the onset of squeal has been estimated by means
of the linear stability analysis. From the nonlinear approach, the theoretical disc brake model can now predict the nonlinear
behavior of the squealing disc brake in terms of the squealing frequencies and the corresponding wave pattern motion.
Appendix A. Proof of the wave pattern expression

The binary mode expansion of Eq. (30) can be rewritten as

wðr; y; tÞ ¼ ½RnðrÞ � cosfn � y� fðtÞg�f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ðtÞ

q
� a1ðtÞg, (A.1)

where gðtÞ ¼ a2ðtÞ=a1ðtÞ and fðtÞ ¼ tan�1fgðtÞg. If the phase angle increases in time, it represents a forward traveling wave.
Alternately, for a decreasing phase angle in time, the wave travels backward. Hence, the direction of the wave propagation
for a given time is determined by the rate of change in the phase angle as being a function of the wave pattern index, c(t)
since

dfðtÞ
dt
¼

_gðtÞ
1þ g2ðtÞ

¼
cðtÞ

f_a2
1ðtÞ þ _a

2
2ðtÞg

, (A.2)

where, again, cðtÞ ¼ _a2ðtÞ � a1ðtÞ � a2ðtÞ � _a1ðtÞ. Therefore, the sign of c(t) determines the wave pattern as prescribed in
Eqs. (32)–(35).
Appendix B. The elements of the linearized one-doublet mode model
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where m� ¼ mjf¼0 and v;t � �h=2r � q2w=qtqy and where f is the vector of system variables of m. In automotive
applications, kcbpoðh=r2Þ resulting in b140 and b2o0. Also, the modal damping coefficients are obtained from

D1 ¼ Rd1 þ Ns1 þ 2xnon and D2 ¼ Rd2 þ Ns2 þ 2xnon. (B.9)
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